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Figure 5.13 Comparison of
the upwind difference numerical
results and the analytical solution

for Case 2

5.6.1

The central differencing scheme failed to produce a reasonable result with
the same grid resolution. The upwind scheme produces a much more realistic
solution that is, however, not very close to the exact solution near boundary B.

Table 5.7

Node Distance Finite volume Analytical Difference Percentage

solution solution error
1 0.1 0.9998 1.0000 0.0002 0.02
2 0.3 0.9987 0.9999 0.001 0.13
3 0.5 0.9921 0.9999 0.008 0.79
4 0.7 0.9524 0.9994 0.047 4.71
5 0.9 0.7143 0.9179 0.204 22.18
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Assessment of the upwind differencing scheme

Conservativeness: The upwind differencing scheme utilises consistent
expressions to calculate fluxes through cell faces: therefore it can be easily
shown that the formulation is conservative.

Boundedness: The coefficients of the discretised equation are always posi-
tive and satisfy the requirements for boundedness. When the flow satisfies
continuity the term (F, — F,) in ap (see (5.31)) is zero and gives ap=a; + ay,
which is desirable for stable iterative solutions. All the coefficients are
positive and the coefficient matrix is diagonally dominant, hence no ‘wiggles’
occur in the solution.

Transportiveness: The scheme accounts for the direction of the flow so
transportiveness is built into the formulation.

Accuracy: The scheme is based on the backward differencing formula so the
accuracy is only first-order on the basis of the Taylor series truncation error
(see Appendix A).

Because of its simplicity the upwind differencing scheme has been
widely applied in early CFD calculations. It can be easily extended to
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Figure 5.14 Flow domain for
the illustration of false diffusion

multi-dimensional problems by repeated application of the upwind strategy
embodied in the coefficients of (5.31) in each co-ordinate direction. A major
drawback of the scheme is that it produces erroneous results when the flow
is not aligned with the grid lines. The upwind differencing scheme causes
the distributions of the transported properties to become smeared in such
problems. The resulting error has a diffusion-like appearance and is referred
to as false diffusion. The effect can be illustrated by calculating the trans-
port of scalar property ¢ using upwind differencing in a domain where the
flow is at an angle to a Cartesian grid.

In Figure 5.14 we have a domain where # = v =2 m/s everywhere so the
velocity field is uniform and parallel to the diagonal (solid line) across the
grid. The boundary conditions for the scalar are ¢ = 0 along the south and
east boundaries, and ¢ = 100 on the west and north boundaries. At the first
and the last nodes where the diagonal intersects the boundary a value of 50
is assigned to property ¢.
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To identify the false diffusion due to the upwind scheme, a pure convec-
tion process is considered without physical diffusion. There are no source
terms for ¢ and a steady state solution is sought. The correct solution is
known in this case. As the flow is parallel to the solid diagonal the value of
¢ at all nodes above the diagonal should be 100 and below the diagonal it
should be zero. The degree of false diffusion can be illustrated by calculating
the distribution of ¢ and plotting the results along the diagonal (X—X). Since
there is no physical diffusion the exact solution exhibits a step change of ¢
from 100 to zero when the diagonal X—X crosses the solid diagonal. The cal-
culated results for different grids are shown in Figure 5.15 together with the
exact solution. The numerical results show badly smeared profiles.

The error is largest for the coarsest grid, and the figure shows that
refinement of the grid can, in principle, overcome the problem of false
diffusion. The results for 50 x 50 and 100 x 100 grids show profiles that
are closer to the exact solution. In practical flow calculations, however,
the degree of grid refinement required to eliminate false diffusion can be
prohibitively expensive. Trials have shown that, in high Reynolds number
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Figure 5.15
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flows, false diffusion can be large enough to give physically incorrect results
(Leschziner, 1980; Huang et a/., 1985). Therefore, the upwind differencing
scheme is not entirely suitable for accurate flow calculations and considerable
research has been directed towards finding improved discretisation schemes.

The hybrid differencing scheme of Spalding (1972) is based on a combina-
tion of central and upwind differencing schemes. The central differencing
scheme, which is second-order accurate, is employed for small Peclet num-
bers (Pe < 2) and the upwind scheme, which is first-order accurate but
accounts for transportiveness, is employed for large Peclet numbers (Pe > 2).
As before, we develop the discretisation of the one-dimensional convection—
diffusion equation without source terms. This equation can be interpreted
as a flux balance equation. The hybrid differencing scheme uses piecewise
formulae based on the local Peclet number to evaluate the net flux through
each control volume face. The Peclet number is evaluated at the face of the
control volume. For example, for a west face,

Pe, _L () (5.35)
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The hybrid differencing formula for the net flux per unit area through the
west face is as follows:
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4w =F,0w for Pe,>2  (5.36)
4n =L, 0p for Pe, <=2



